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Abstract

Artificial intelligence (Al) has undergone a renaissance recently, making major progress in
key domains such as vision, language, control, and decision-making. This has been due, in
part, to cheap data and cheap compute resources, which have fit the natural strengths of deep
learning. However, many defining characteristics of human intelligence, which developed under
much different pressures, remain out of reach for eurrent approaches. In particular, generalizing
beyond one’s experiences—a hallmark of human intelligence from infancy—remains a formidable
challenge for modern Al

The following is part position paper, part review, and part unification. We argue that
combinatorial generalization must be a top priority for Al to achieve human-like abilities, and that
structured representations and computations are key to realizing this objective. Just as hiology
uses nature and nurture cooperatively, we reject the false choice between “hand-engineering”
and “end-to-end” learning, and instead advocate for an approach which benefits from their
complementary strengths. We explore how using relational inductive biases within deep learning
architectures can facilitate learning about entities, relations, and rules for composing them. We
present a new building block for the Al toolkit with a strong relational inductive bias—the graph
network—which generalizes and extends various approaches for neural networks that operate
on graphs, and provides a straichtforward interface for manipulating structured knowledge and
producing structured behaviors. We discuss how graph networks can support relational reasoning
and combinatorial generalization. laying the foundation for more sophisticated. interpretable,
and flexible patterns of reasoning. As a companion to this paper., we have also released an
open-source software library for building graph networks, with demonstrations of how to use
them in practice.
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——e Inductive Bias

Definitions

An inductive bias allows a learning algorithm to prioritize

one solution over another, independent of the observed data.

The Inductive bias of a learning algorithm is the set of
assumptions that the learner uses to predict outputs given

Inputs that It has not encountered.



——e Inductive Bias

In linear regression

 The relationship between predictor variables X and the target Y can be expressed

In linear combinations, and errors should be minimal under a quadratic penalty.
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——e Inductive Bias

In ridge & lasso regression

 Prefers solutions with smaller regression coefficients
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——e Inductive Bias

In k-nearest neighbors

e The classification of an observation will be most similar to the classification of

other instances that are nearby
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(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor



——e Inductive Bias

In support vector machines

e When drawing a boundary between two classes, attempt to maximize the width

of the boundary.
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—— Relational Inductive Bias

Definition

 Refers to inductive biases which impose constraints on relationships and

Interactions among entities in a learning process.
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—— Relational Inductive Bias

In neural networks
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Figure 1: Reuse and sharing in common deep learning building blocks. (a) Fully connected layer,
in which all weights are independent, and there is no sharing. (b) Convolutional layer, in which
a local kernel function is reused multiple times across the input. Shared weights are indicated by
arrows with the same color. (¢) Recurrent layer, in which the same function is reused across different
processing steps.
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—— Relational Inductive Bias

In neural networks

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Wealk -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 1: Various relational inductive biases in standard deep learning components. See also Section ,



Different graph representations

——= Graph Neural Networks
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—— Graph Neural Networks

Definition of graph

Attributes

vorssv,: [ [ ]

’ Vsk ‘ ' V'T‘k '

Here we use “graph” to mean a directed, attributed multi-graph with a global attribute. In our
terminology. a node is denoted as v;, an edge as ej.. and the global attributes as u. We also use

s and ry to indicate the indices of the sender and receiver nodes (see below), respectively, for
edge k. To be more precise, we define these terms as:
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—— Graph Neural Networks

Graph Network (GN) block

A GN block contains three “update” functions, ¢, and three “aggregation” functions, p,

&) = 0 (€1 Vryo Voo W) & = p (E))
vl =¢" (&, v, u) & = p (F) (1)
u! — ®-u- (él“—,f‘ ll) ‘—/l — pb—}'t.-:- (V*!)

(a) Edge update (b) Node update (c) Global update

Figure 3: Updates in a GN block. Blue indicates the element that is being updated, and black
indicates other elements which are involved in the update (note that the pre-update value of the

blue element is also used in the update). See Equation |1|for details on the notation. 14



—— Graph Neural Networks

Pseudo code

Algorithm 1 Steps of computation in a full GN block.

function GRAPHNETWORK(E, V', u)
for k€ {1...N°} do
e, «— O° (ep. v, . Vg, . 1)
end for
forie {1...N"} do
let £} = {(e}., 7%, 5%)}
el + " ()
v, < ¢ (€], v;. u)
end for
let V' ={v'}i_1.yo
let ' = {(€}.. 7k, 5k) } ey nve
é;’ — pe—>-u (Ef)
‘_/, Y p'l»‘—>"u- (I/ff)
u — o" (e,v',u)
return (£, V' u’)

end function

rp=t, k=1:N*¢

> 1.

> 2.
. Compute updated node attributes

. Ag

Compute updated edge attributes

Aggregate edge attributes per node

Aggregate edge attributes globally
goregate node attributes globally
Compute updated global attribute
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—— Graph Neural Networks

Different GN block configurations

Edge block  Node block Global block

(a) Full GN block

Edge block

Node block

Global block

(c) Message-passing neural network
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——= Graph Neural Networks

Message passing
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Figure 7: Example of message passing. Each row highlights the information that diffuses through
the graph starting from a particular node. In the top row, the node of interest is in the upper
right; in the bottom row, the node of interest is in the bottom right. Shaded nodes indicate how far
information from the original node can travel in m steps of message passing: bolded edges indicate
which edges that information has the potential to travel across. Note that during the full message
passing procedure, this propagation of information happens simultaneously for all nodes and edges
in the graph (not just the two shown here).
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—= GNN Applications

Shortest path prediction

Ground truth Model-predicted Model-predicted Model-predicted Model-predicted
Solution length: & Step 01710 Step 04 /10 Step 07 £ 10 Step 10710

Ground truth Model-predicted Model-predicted Model-predicted Model-predicted
Solution length: 3 Step 01710 Step 04/ 10 Step 07 /10 Step 10710

Ground truth Model-predicted Model-predicted Model-predicted Model-predicted
Solution length: 3 Step 01710 Step 04/ 10 Step 07 £ 10 Step 10/ 10

18



——= GNN Applications

van den Berg, R. et al., Graph Convolutional Matrix Completion, 2017
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Figure 1: Left: Rating matrix M with entries that correspond to user-item interactions (ratings between 1-5)
or missing observations (0). Right: User-item interaction graph with bipartite structure. Edges correspond
to interaction events, numbers on edges denote the rating a user has given to a particular item. The matrix
completion task (i.e. predictions for unobserved interactions) can be cast as a link prediction problem and modeled
using an end-to-end trainable graph auto-encoder.

van den Berg, R., Kipf, T. N., & Welling, M. (2017). Graph Convolutional Matrix Completion. stat, 1050, 7. 19



—= GNN Applications

Gilmer J. et al., Neural Message Passing for Quantum Chemistry, 2017

 Predicting various chemical properties of organic molecules (13 regression tasks)

Targets

DFT
~ 10% seconds |£,wo, ...

N

Message Passing Neural Net
N M 7\
N \’;H (;}j‘

N/ W/ \ /

~ 1072 seconds

Figure 1. A Message Passing Neural Network predicts quantum
properties of an organic molecule by modeling a computationally
expensive DFT calculation.

Table 2. Comparison of Previous Approaches (left) with MPNN baselines (middle) and our methods (right)

Target BAML BOB CM ECFP4 HDAD | GC GG-NN DTNN | enn-s2s enn-s2s-ens5
mu 4.34 423 449 482 3.34 0.70 1.22 - 0.30 0.20
alpha 3.01 298 433 3454 1.75 227 155 - 0.92 0.68
HOMO  2.20 220 3.09 289 1.54 .18 1.17 - 0.99 0.74
LUMO 276 274 426 3.10 1.96 1.10 1.08 - 0.87 0.65
gap 3.28 3.41 532 3.86 2.49 1.78 1.70 - 1.60 1.23
R2 3.25 0.80 2.83 90.68 1.35 4.73  3.99 - 0.15 0.14
7ZPVE 3.31 340 480 241.58 1091 9.75 252 - 1.27 1.10
uo 1.21 1.43 298 85.01 0.58 3.02 0.83 - 0.45 0.33
U 1.22 1.44 299 85.59 0.59 3.16 0.86 - 0.45 0.34
H 1.22 1.44 299 86.21 0.59 3.19 0.81 - 0.39 0.30
G 1.20 142 297 7836  0.59 295 0.78 842 0.44 0.34
Cv 1.64 1.83 236 3029 0.88 145 1.19 - 0.80 0.62
Omega  0.27 035 132 147 0.34 0.32 053 - 0.19 0.15
Average 2.17 208 337 5397 1.35 259 1.36 - 0.68 0.52
20

Gilmer, J., Schoenholz, S. S., Riley, P. F,, Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.



—= GNN Applications

Zitnik, M. et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, 2018

o Multirelational link prediction to model polypharmacy side effects
« 964 different types of edges (one for each side effect type)
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Zitnik, M., Agrawal, M., & Leskovec, J. (2018). Modeling polypharmacy side effects with graph convolutional networks. arXiv preprint arXiv:1802.00543. 21



——= GNN Applications

Wang, X. et al., Non-local Neural Networks, 2018

Figure 3. Examples of the behavior of a non-local block in res3 computed by a 5-block non-local model trained on Kinetics. These examples
are from held-out validation videos. The starting point of arrows represents one x;, and the ending points represent x;. The 20 highest
weighted arrows for each x; are visualized. The 4 frames are from a 32-frame input, shown with a stride of 8 frames. These visualizations
show how the model finds related clues to support its prediction.

Wang, X., Girshick, R., Gupta, A., & He, K. (2018, June). Non-local neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Vol. 1, No. 3, p. 4).
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—= GNN Applications

Kool, W. et al., Attention, Learn to Solve Routing Problems, 2018 (1/2)
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Figure 2: Attention based decoder for the TSP problem. The decoder takes as input the graph
embedding and node embeddings. At each time step ¢, the context consist of the graph embedding
and the embeddings of the first and last (previously output) node of the partial tour, where learned
placeholders are used if ¢ = 1. Nodes that cannot be visited (since they are already visited) are
masked. The example shows how a tour w = (3, 1, 2, 4) is constructed. Best viewed in color.

Kool, W., van Hoof, H., & Welling, M. (2018). Attention, Learn to Solve Routing Problems!. 23



——= GNN Applications

Kool, W. et al., Attention, Learn to Solve Routing Problems, 2018 (2/2)
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Figure 5: Optimality gap of different methods as a function of problem size n €
{5,10,15, 20, 25, 30, 40, 50, 60, 75,100, 125}. General baselines are drawn using dashed lines
while learned algorithms are drawn with a solid line. Algorithms (general and learned) that per-
form search or sampling are plotted without connecting lines for clarity. The *, *%, *%#* gpd **%*
indicate that values are reported from Bello et al. (2016), Vinyals et al. (2015), Dai et al. (2017) and
Nowak et al. (2017) respectively. Best viewed in color.

Kool, W,, van Hoof, H., & Welling, M. (2018). Attention, Learn to Solve Routing Problems.
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—= GNN Applications

Zambaldi, V. et al., Deep Reinforcement Learning with Relational Inductive Biases, 2018 (1/4)
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Figure 1: Box-World and StarCraft II tasks demand reasoning about entities and their relations.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, ., ... & Shanahan, M. (2018). Deep reinforcement learning with relational inductive biases. 25



——= GNN Applications

Zambaldi, V. et al., Deep Reinforcement Learning with Relational Inductive Biases, 2018 (2/4)
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Figure 2: Box-World agent architecture and multi-head dot-product attention. E is a matrix that
compiles the entities produced by the visual front-end; fy is a multilayer perceptron applied in parallel
to each row of the output of an MHDPA step, A, and producing updated entities, E.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., ... & Shanahan, M. (2018). Deep reinforcement learning with relational inductive biases. 26



—= GNN Applications

Zambaldi, V. et al., Deep Reinforcement Learning with Relational Inductive Biases, 2018 (3/4)

a) Underlying graph

b) Entity 1 Entity 2 Entity 3 Entity 4 Entity 5

Attention
head 1

Attention
head 2

Figure 4: Visualization of attention weights. (a) The underlying graph of one example level; (b)
the result of the analysis for that level, using each of the entities along the solution path (1-5) as
the source of attention. Arrows point to the entities that the source is attending to. An arrow’s
transparency is determined by the corresponding attention weight.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., ... & Shanahan, M. (2018). Deep reinforcement learning with relational inductive biases.
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——= GNN Applications

Zambaldi, V. et al., Deep Reinforcement Learning with Relational Inductive Biases, 2018 (4/4)
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Figure 5: Generalization in Box-World. Zero-shot transfer to levels that required: (a) opening a
longer sequence of boxes; (b) using a key-lock combination that was never required during training.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, ., ... & Shanahan, M. (2018). Deep reinforcement learning with relational inductive biases.



— Python Implementations

In both Tensorflow and Pytorch

* (Tensorflow, with Sonnet) https://github.com/deepmind/graph_nets

e (Pytorch) https://github.com/rustyls/pytorch_geometric

 (Pytorch) https://github.com/dmlic/dgl

29


https://github.com/deepmind/graph_nets
https://github.com/rusty1s/pytorch_geometric
https://github.com/dmlc/dgl

——e DIscussions

Limitations and future work

* Where do the graphs come from that the computations are held on?
« Assuming a fully-connected, dense graph is too naive.
e Many underlying graph structures are much more sparse.

 Can the graph structures be modified adaptively during the course of computation?
« Can the edges be removed depending on the context of the graph?

30



—— Additional Papers

Machine Learning for Combinatorial Optimization:
a Methodological Tour d’Horizon*
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Abstract

This paper surveys the recent attempts, both from the machine
learning and operations research communities, at leveraging machine
learning to solve combinatorial optimization problems. Given the hard . .
nature of these problems, state-of-the-art methodologies involve algo- same ML model to make decisions. The ML model takes as input the current
rithmic decisions that either require too much computing time or are state of the algorithm, which may include the problem definition.
not mathematically well defined. Thus, machine learning looks like
a promising candidate to effectively deal with those decisions. We
advocate for pushing further the integration of machine learning and
combinatorial optimization and detail methodology to do so. A main
point of the paper is seeing generic optimization problems as data
points and inquiring what is the relevant distribution of problems to
use for learning on a given task.

Figure 9: The combinatorial optimization algorithm repeatedly queries the



Thank you.



	Relational Inductive Biases, Deep Learning, and Graph Networks
	슬라이드 번호 2
	Contents
	Inductive Bias
	Inductive Bias
	Inductive Bias
	Inductive Bias
	Inductive Bias
	Relational Inductive Bias
	Relational Inductive Bias
	Relational Inductive Bias
	Graph Neural Networks
	Graph Neural Networks
	Graph Neural Networks
	Graph Neural Networks
	Graph Neural Networks
	Graph Neural Networks
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	GNN Applications
	Python Implementations
	Discussions
	Additional Papers
	Thank you.

